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● Bilingual Word Embeddings (BWEs) can be built effectively even for 

low-resource settings

● Various unsupervised methods have been proposed relying on the 

assumption that embedding spaces are isomorphic* 

* (Zhang et al., 2017; Lample et al., 2018; Artetxe et al., 2018; Alvarez-Melis and Jaakkola, 2018; Chen and Cardie, 2018; Hoshen and Wolf, 2018; Mohiuddin and Joty, 2019; Alaux et al., 2019; Dou et al., 2020; 

Grave et al., 2019; Li et al., 2020).  

● Many methods fail for distant language pairs (Vulic et al. (2019))

● They don’t compare with straightforward baselines

…but
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● Do we really need unsupervised 

approaches for building Bilingual 

Word Embeddings?

● If yes, aren’t we missing any 

baselines?
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● They represent lexicons of different languages in a shared 

embedding space

● They are essential for supporting semantic and knowledge 

transfers in a variety of cross-lingual NLP tasks (Machine 

translation, Bilingual NER, …)  

● They can be built effectively even when only a small seed 

lexicon is available 

● They work even for low-resource language not covered by 

PLMs 

Background
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   Semi-supervised mapping

7

● VecMap: build BWE from noisy lexicon and monolingual embeddings

● VecMap iterates over two steps: embedding mapping and dictionary induction. 

● Semi-supervised approach performs well with small and noisy seed lexicons 

by iteratively refining them. 

Artetxe, Mikel, Gorka Labaka, and Eneko Agirre. "Learning principled bilingual mappings of word embeddings while preserving monolingual invariance." EMNLP, 2016.
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● We test identical word pairs on multiple language pairs with distinct scripts, 

including pairs using distinct numerals.

● We propose to strengthen identical pairs by extending them with further easily 

accessible pairs based on romanization and edit distance

● We focus on distant language pairs having distinct scripts for many of which 

unsupervised approaches have failed or had very poor performance so far 

● Our work calls into question, at least for BDI, the strong trend toward unsupervised 

approaches in recent literature



   Outline

10

1. Introduction

2. Background

3. Contribution

4. Approach

5. Evaluation

6. Conclusion 



   Outline

10

1. Introduction

2. Background

3. Contribution

4. Approach

5. Evaluation

6. Conclusion 



Approach

   Unsupervised pair extraction

11

● Extract seed lexicon for mapping approaches



Approach

   Unsupervised pair extraction

11

● Extract seed lexicon for mapping approaches

● No need for labeled data -> Applicable to a wide range of languages



Approach

   Unsupervised pair extraction
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● Extract seed lexicon for mapping approaches

● No need for labeled data -> Applicable to a wide range of languages

● Two approaches:

a. ID: Identical pair approach for different scripts

b. ID++ : Unsupervised romanization-based augmentation
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● Available in large quantities:

○ even for distinct scripts and with different 
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Søgaard, A., Ruder, S., and Vulic ́, I. (2018). On the limitations of unsupervised bilingual dictionary induction.

Life   - ĝೕವನ
Language   - ಸĳಮ್ಮೇಳನ
Conference - ಭಾಷೆ



   ID: Identical pairs for distinct scripts

12

● Available in large quantities:

○ even for distinct scripts and with different 

numerals

● Examples: 

○ Punctuation marks and digits

○ Non-transliterated named entities written in 

the Latin script

○ English words (assumingly words of a title) 

which were not translated in the non-English 

languages 

Approach

Søgaard, A., Ruder, S., and Vulic ́, I. (2018). On the limitations of unsupervised bilingual dictionary induction.
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● Exploit the concept of 

transliteration and 

orthographic similarity to find 

a cheap signal between 

languages 

Approach

“Transliteration is a type of conversion 

of a text from one script to another 

that involves swapping letters.”

Greek English Translit

Ελληνική Δημοκρατία Hellenic Republic Ellēnikē Dēmokratia

Ελευθερία Freedom Eleutheria

https://en.wikipedia.org/wiki/Writing_system
https://en.wikipedia.org/wiki/Letter_(alphabet)
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   Romanization vs Transliteration
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Approach

https://github.com/isi-nlp/uroman 

● Uroman romanizer:
“uroman is a universal romanizer. It converts 

text in any script to the Latin alphabet.”

https://github.com/isi-nlp/uroman


   Rom : Unsupervised pair extraction
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1) Source candidate 

extraction

2) Target candidate 

extraction

3) Candidate matching

Approach
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● Bilingual Dictionary Induction task: 

○ Goal: generate translations in the target language of the source word in 

the source language. 

○ Given a BWEs representing two words in two languages, create n-best 

list by taking the top n words with the closest representranslation to the 

source word according to the cosine distance

● acc@1 scores calculated by the MUSE evaluation tool  
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Evaluation

   MUSE without Proper Nouns

19
Kementchedjhieva, Y., Hartmann, M., and Søgaard, A. (2019). Lost in evaluation: Misleading benchmarks for bilingual dictionary induction. arXiv preprint arXiv:1909.05708. 
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   Non-English centric evaluation
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● PanLex dictionaries
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● We exploited identical pairs that surprisingly appear in corpora of distinct scripts

● We combined them with a simple method to extract the initial hypothesis set via 

romanization and edit distance

● With both approaches, we obtained results that are competitive with high-quality dictionaries

● Without using explicit cross-lingual signal, we outperformed previous unsupervised work 

● We question unsupervised approaches, and show that cheap cross-lingual signals should 

always be considered for building BWEs, even for distant languages. 
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● Extend this work to LMs: 

○ our approach would be applicable to this paper that uses identical words to 

improve the cross-lingual alignment in multilingual LMs: 

“UNKs Everywhere: Adapting Multilingual Language Models to New Scripts”


