Don't Forget Cheap Training Signals Before Building Unsupervised Bilingual Word Embeddings

Silvia Severini, Viktor Hangya, Masoud Jalili Sabet, Alexander Fraser, Hinrich Schütze

BUCC@LREC 2022

- 1. Introduction
- 2. Background
- 3. Contribution
- 4. Approach
- 5. Evaluation
- 6. Conclusion

1. Introduction

2. Background

- 3. Contribution
- 4. Approach
- 5. Evaluation
- 6. Conclusion

Introduction

• Bilingual Word Embeddings (BWEs) can be built effectively even for

low-resource settings

^{* (}Zhang et al., 2017; Lample et al., 2018; Artetxe et al., 2018; Alvarez-Melis and Jaakkola, 2018; Chen and Cardie, 2018; Hoshen and Wolf, 2018; Mohiuddin and Joty, 2019; Alaux et al., 2019; Dou et al., 2020; Grave et al., 2019; Li et al., 2020).

Introduction

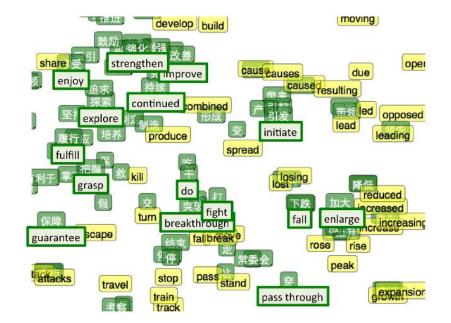
- Bilingual Word Embeddings (BWEs) can be built effectively even for low-resource settings
- Various unsupervised methods have been proposed relying on the assumption that embedding spaces are isomorphic*

^{* (}Zhang et al., 2017; Lample et al., 2018; Artetxe et al., 2018; Alvarez-Melis and Jaakkola, 2018; Chen and Cardie, 2018; Hoshen and Wolf, 2018; Mohiuddin and Joty, 2019; Alaux et al., 2019; Dou et al., 2020; Grave et al., 2019; Li et al., 2020).

Introduction

- Bilingual Word Embeddings (BWEs) can be built effectively even for low-resource settings
- Various unsupervised methods have been proposed relying on the assumption that embedding spaces are isomorphic*
 ...but

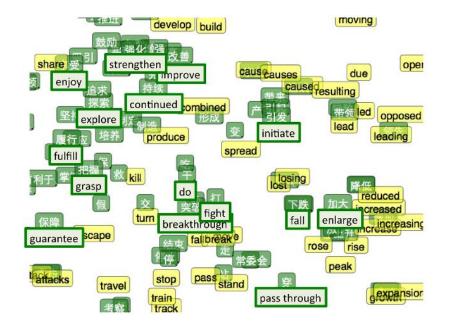
^{* (}Zhang et al., 2017; Lample et al., 2018; Artetxe et al., 2018; Alvarez-Melis and Jaakkola, 2018; Chen and Cardie, 2018; Hoshen and Wolf, 2018; Mohiuddin and Joty, 2019; Alaux et al., 2019; Dou et al., 2020; Grave et al., 2019; Li et al., 2020).


Introduction

- Bilingual Word Embeddings (BWEs) can be built effectively even for low-resource settings
- Various unsupervised methods have been proposed relying on the assumption that embedding spaces are isomorphic*
 ...but
- Many methods fail for distant language pairs (Vulic et al. (2019))
- They don't compare with straightforward baselines

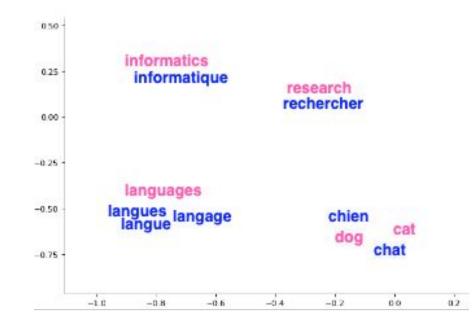
^{* (}Zhang et al., 2017; Lample et al., 2018; Artetxe et al., 2018; Alvarez-Melis and Jaakkola, 2018; Chen and Cardie, 2018; Hoshen and Wolf, 2018; Mohiuddin and Joty, 2019; Alaux et al., 2019; Dou et al., 2020; Grave et al., 2019; Li et al., 2020).

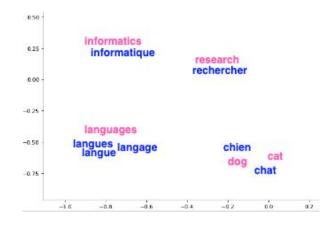
Questions


 Do we really need unsupervised approaches for building Bilingual Word Embeddings?

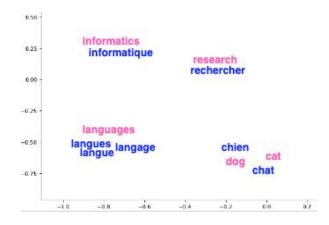
Questions

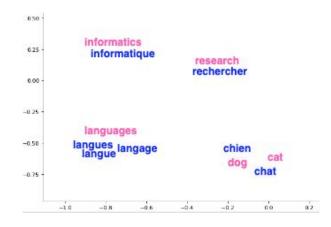
 Do we really need unsupervised approaches for building Bilingual Word Embeddings?


 If yes, aren't we missing any baselines?

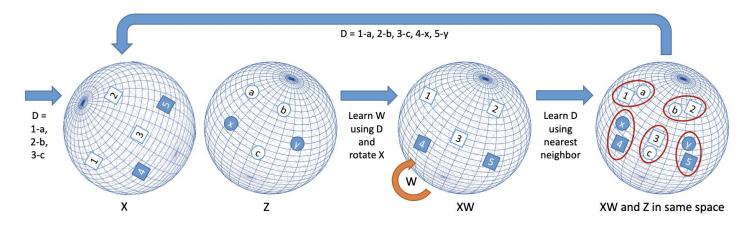

- 1. Introduction
- 2. Background
- 3. Contribution
- 4. Approach
- 5. Evaluation
- 6. Conclusion

- 1. Introduction
- 2. Background
- 3. Contribution
- 4. Approach
- 5. Evaluation
- 6. Conclusion

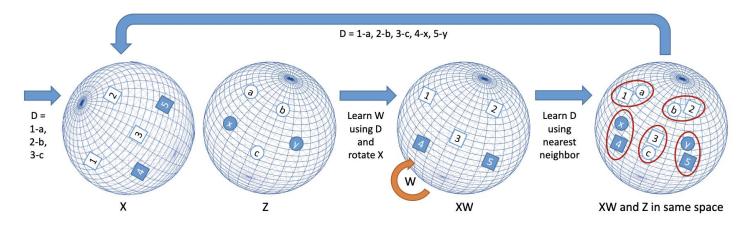

• They represent lexicons of different languages in a shared embedding space


- They represent lexicons of different languages in a shared embedding space
- They are essential for supporting semantic and knowledge transfers in a variety of **cross-lingual** NLP tasks (Machine translation, Bilingual NER, ...)

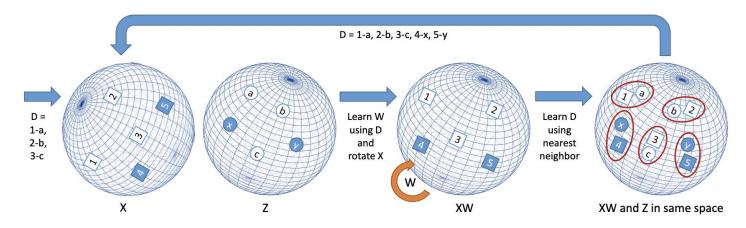
- They represent lexicons of different languages in a shared embedding space
- They are essential for supporting semantic and knowledge transfers in a variety of **cross-lingual** NLP tasks (Machine translation, Bilingual NER, ...)
- They can be built effectively even when only a **small** seed lexicon is available



- They represent lexicons of different languages in a shared embedding space
- They are essential for supporting semantic and knowledge transfers in a variety of **cross-lingual** NLP tasks (Machine translation, Bilingual NER, ...)
- They can be built effectively even when only a **small** seed lexicon is available
- They work even for low-resource language not covered by PLMs


Semi-supervised mapping

• VecMap: build BWE from noisy lexicon and monolingual embeddings


Semi-supervised mapping

- VecMap: build BWE from noisy lexicon and monolingual embeddings
- VecMap iterates over two steps: embedding mapping and dictionary induction.

Semi-supervised mapping

- VecMap: build BWE from noisy lexicon and monolingual embeddings
- VecMap iterates over two steps: embedding mapping and dictionary induction.
- Semi-supervised approach performs well with small and **noisy seed lexicons** by iteratively refining them.

- 1. Introduction
- 2. Background
- 3. Contribution
- 4. Approach
- 5. Evaluation
- 6. Conclusion

- 1. Introduction
- 2. Background
- **3.** Contribution
- 4. Approach
- 5. Evaluation
- 6. Conclusion

Contribution

• We test identical word pairs on multiple language pairs with **distinct scripts**, including pairs using **distinct numerals**

Contribution

- We test identical word pairs on multiple language pairs with **distinct scripts**, including pairs using **distinct numerals**
- We propose to strengthen identical pairs by extending them with further easily accessible pairs based on **romanization** and edit distance

Contribution

- We test identical word pairs on multiple language pairs with **distinct scripts**, including pairs using **distinct numerals**
- We propose to strengthen identical pairs by extending them with further easily accessible pairs based on **romanization** and edit distance
- We focus on distant language pairs having distinct scripts for many of which unsupervised approaches have failed or had very poor performance so far

Contribution

- We test identical word pairs on multiple language pairs with **distinct scripts**, including pairs using **distinct numerals**.
- We propose to strengthen identical pairs by extending them with further easily accessible pairs based on **romanization** and edit distance
- We focus on distant language pairs having distinct scripts for many of which unsupervised approaches have failed or had very poor performance so far
- Our work calls into question, at least for **BDI**, the strong trend toward unsupervised approaches in recent literature

- 1. Introduction
- 2. Background
- 3. Contribution
- 4. Approach
- 5. Evaluation
- 6. Conclusion

- 1. Introduction
- 2. Background
- 3. Contribution
- 4. Approach
- 5. Evaluation
- 6. Conclusion

• Extract seed lexicon for mapping approaches

- Extract seed lexicon for mapping approaches
- No need for labeled data -> Applicable to a wide range of languages

- Extract seed lexicon for mapping approaches
- No need for labeled data -> Applicable to a wide range of languages
- Two approaches:
 - a. **ID**: Identical pair approach for different scripts
 - b. **ID++** : Unsupervised romanization-based augmentation

Approach

ID: Identical pairs for distinct scripts

- Available in large quantities:
 - even for distinct scripts and with different

numerals

Lang	ID	Lang	ID	Lang	ID
ko-th*	17K	ko-he*	11 K	he-th*	15K
en-zh*	62K	en-bn*	31K	en-ar*	19K
en-th	46K	en-hi*	30K	en-ru	18K
en-ja	43K	en-ta*	23K	en-he*	17K
en-el	35K	en-kn*	21K	en-ko*	15K
en-fa*	32K		,		

Life - ಜೀವನ Language - ಸಮ್ಮೇಳನ Conference - ಭಾಷೆ

Approach

ID: Identical pairs for distinct scripts

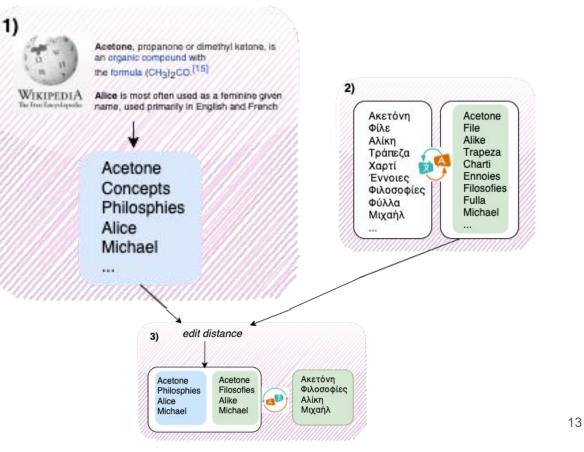
- Available in large quantities:
 - even for distinct scripts and with different

numerals

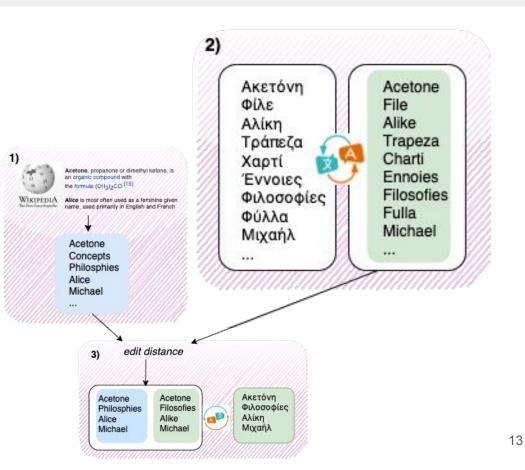
- Examples:
 - Punctuation marks and digits
 - Non-transliterated named entities written in en-fa* the Latin script
 - English words (assumingly words of a title)
 which were not translated in the non-English
 languages

Lang	ID	Lang	ID	Lang	ID
ko-th*	17K	ko-he*	11 K	he-th*	15K
en-zh*	62K	en-bn*	31K	en-ar*	19K
en-th	46K	en-hi*	30K	en-ru	18K
en-ja	43K	en-ta*	23K	en-he*	17K
en-el	35K	en-kn*	21K	en-ko*	15K
en-fa*	32K				

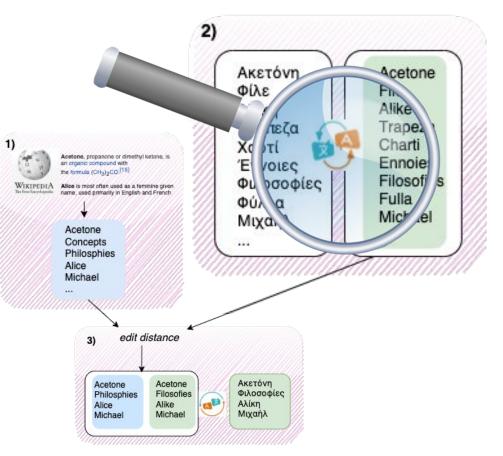
- Exploit the concept of
 - transliteration and
 - orthographic similarity to find
 - a cheap signal between
 - languages


Exploit the concept of
 transliteration and
 orthographic similarity to find
 a cheap signal between

languages

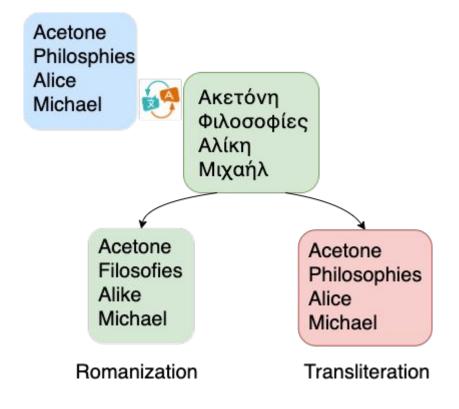

"Transliteration is a type of conversion of a text from one script to another that involves swapping letters."

Greek	English	Translit
Ελληνική Δημοκρατία	Hellenic Republic	Ellēnikē Dēmokratia
Ελευθερία	Freedom	Eleutheria


 Source candidate extraction

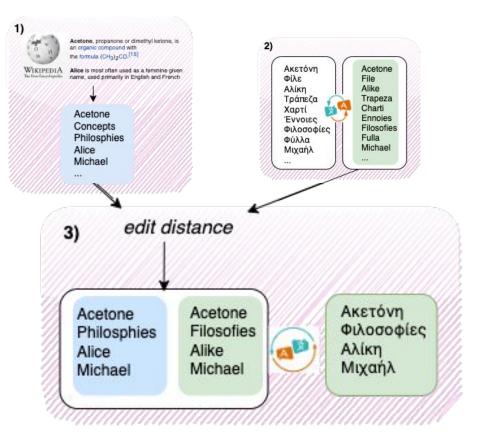
- Source candidate extraction
- Target candidate extraction

- Source candidate extraction
- Target candidate extraction



Romanization vs Transliteration

• Uroman romanizer:


"uroman is a *universal romanizer*. It converts text in any script to the Latin alphabet."

uroman v1.2.8	Written by Ulf Hermjakob, USC/ISI	Download	GitHub
Enter text to be ro	manized:		
r choose from these F	wamples Ambaric (Ethiopia) A	rahia Banga	i Burmese (Myanmar) Chinese English Braille Egyptian Far
			urkish Uyghur (northwestern China) (clear)
Romanize text in	box above or Pick a ra	andom text	
3-letter lang. code:	(optional)		
	https://githu	b.com/	isi-nlp/uroman

Rom : Unsupervised pair extraction

- Source candidate extraction
- 2) Target candidate extraction
- 3) Candidate matching

Approach

OOVs analysis

	MUSE	ID	Romanized
en-th	6,799	46,653	10,721 / 53,804
en-ja	7,135	43,556	11,488 / 118,626
en-kn	1,552	21,090	12,888 / 59,207
en-ta	8,091	23,538	5,987 / 120,836
en-zh	8,728	62,289	6,360 / 41,829
en-ar	11,571	19,275	4,773 / 61,031
en-hi	8,704	30,502	16,180 / 73,553
en-ru	10,887	18,663	9,913 / 301,698
en-el	10,662	35,270	20,740 / 150,472
en-fa	8,869	32,866	10,226 / 85,210
en-he	9,634	17,012	4,005 / 40,258
en-bn	8,467	31,954	10,721 / 53,804
en-ko	7,999	15,518	9956 / 134156

Approach

OOVs analysis

			•
	MUSE	ID ^o	> Romanized
en-th	6,799	46,653	10,721 / 53,804
en-ja	7,135	43,556	11,488 / 118,626
en-kn	1,552	21,090	12,888 / 59,207
en-ta	8,091	23,538	5,987 / 120,836
en-zh	8,728	62,289	6,360 / 41,829
en-ar	11,571	19,275	4,773 / 61,031
en-hi	8,704	30,502	16,180 / 73,553
en-ru	10,887	18,663	9,913 / 301,698
en-el	10,662	35,270	20,740 / 150,472
en-fa	8,869	32,866	10,226 / 85,210
en-he	9,634	17,012	4,005 / 40,258
en-bn	8,467	31,954	10,721 / 53,804
en-ko	7,999	15,518	9956 / 134156

Outline

- 1. Introduction
- 2. Background
- 3. Contribution
- 4. Approach
- 5. Evaluation
- 6. Conclusion

Outline

- 1. Introduction
- 2. Background
- 3. Contribution
- 4. Approach
- 5. Evaluation
- 6. Conclusion

Introduction

Evaluation

- Bilingual Dictionary Induction task:
 - Goal: generate translations in the target language of the source word in the source language.
 - Given a BWEs representing two words in two languages, create n-best list by taking the top n words with the closest representranslation to the source word according to the cosine distance

Introduction

Evaluation

- Bilingual Dictionary Induction task:
 - Goal: generate translations in the target language of the source word in the source language.
 - Given a BWEs representing two words in two languages, create n-best list by taking the top n words with the closest representranslation to the source word according to the cosine distance

acc@1 scores calculated by the MUSE evaluation tool

н

	en-th	en-ja	en-kn	en-ta	en-zh
	Unsuper	vised			
Artetxe et al. (2018)	0.00	0.96	0.00	0.07	0.07
Grave et al. (2019)	0.00	0.48	0.00	0.07	0.00
Mohiuddin and Joty (2019)	0.00	0.00	0.00	0.00^{\diamond}	0.00
Semi-superv	vised (Ar	tetxe et a	al., 2018)		
ID	24.40	48.87	22.03	17.93	37.00
Rom.	23.33	48.46	22.90	18.00	0.27
ID++	23.47	49.14	24.23	18.20	35.00
MUSE	24.33	48.73	23.78	18.80	36.53

τ.

	en-th	en-ja	en-kn	en-ta	en-zh		
1	Unsuper	vised			1.6		
Artetxe et al. (2018)	0.00	0.96	0.00	0.07	0.07		
Grave et al. (2019)	0.00	0.48	0.00	0.07	0.00		
Mohiuddin and Joty (2019)	0.00	0.00	0.00	0.00^{\diamond}	0.00		
Semi-supervised (Artetxe et al., 2018)							
ID	24.40	48.87	22.03	17.93	37.00		
Rom.	23.33	48.46	22.90	18.00	0.27		
ID++	23.47	49.14	24.23	18.20	35.00		
MUSE	24.33	48.73	23.78	18.80	36.53		

τ.

8		en-th	en-ja	en-kn	en-ta	en-zh
2	1	Unsuper	vised			
8	Artetxe et al. (2018)	0.00	0.96	0.00	0.07	0.07
	Grave et al. (2019)	0.00	0.48	0.00	0.07	0.00
	Mohiuddin and Joty (2019)	0.00	0.00	0.00	0.00^{\diamond}	0.00
	Semi-superv	vised (Ar	tetxe et a	al., 2018)		-
	ID	24.40	48.87	22.03	17.93	37.00
	Rom.	23.33	48.46	22.90	18.00	0.27
	ID++	23.47	49.14	24.23	18.20	35.00
	MUSE	24.33	48.73	23.78	18.80	36.53

.

	en-th	en-ja	en-kn	en-ta	en-zh
1	Unsuper	vised			
Artetxe et al. (2018)	0.00	0.96	0.00	0.07	0.07
Grave et al. (2019)	0.00	0.48	0.00	0.07	0.00
Mohiuddin and Joty (2019)	0.00	0.00	0.00	0.00^{\diamond}	0.00
Semi-superv	vised (Ar	tetxe et a	al., 2018)		
ID	24.40	48.87	22.03	17.93	37.00
Rom.	23.33	48.46	22.90	18.00	0.27
ID++	23.47	<u>49.14</u>	24.23	18.20	35.00
MUSE	24.33	48.73	23.78	18.80	36.53

τ.

	en-th	en-ja	en-kn	en-ta	en-zh
	Unsuper	vised			
Artetxe et al. (2018)	0.00	0.96	0.00	0.07	0.07
Grave et al. (2019)	0.00	0.48	0.00	0.07	0.00
Mohiuddin and Joty (2019)	0.00	0.00	0.00	0.00^{\diamond}	0.00
Semi-superv	vised (Ar	tetxe et a	al., 2018)		
ID	24.40	48.87	22.03	17.93	37.00
Rom.	23.33	48.46	22.90	18.00	0.27
ID++	23.47	49.14	24.23	18.20	35.00
MUSE	24.33	48.73	23.78	18.80	36.53

Results - high-resource

	↓	•			
	Unsup.	ID	Rom.	ID++	MUSE
en-ar	36.30	40.27	39.33	40.20	39.87
en-hi	40.20	40.47	39.60	40.20	40.33
en-ru	44.80	49.13	48.87	49.53	48.80
en-el	47.90	47.87	48.00	48.27	48.00
en-fa	36.70	37.67	36.80	37.67	38.00
en-he	44.60	44.47	44.53	44.67	45.00
en-bn	18.20	19.87	19.80	20.13	21.60
en-ko	19.80	27.92	28.40	28.81	28.94

Results - high-resource

				I	↓
	Unsup.	ID	Rom.	ID++	MUSE
en-ar	36.30	40.27	39.33	40.20	39.87
en-hi	40.20	40.47	39.60	40.20	40.33
en-ru	44.80	49.13	48.87	49.53	48.80
en-el	47.90	47.87	48.00	48.27	48.00
en-fa	36.70	37.67	36.80	37.67	38.00
en-he	44.60	44.47	44.53	44.67	45.00
en-bn	18.20	19.87	19.80	20.13	21.60
en-ko	19.80	27.92	28.40	28.81	28.94

MUSE without Proper Nouns

			Baselines			Our	
			Unsup	Semi-sup.	Sem	ni-superv	ised
				MUSE	ID	Rom.	ID++
1	en-th	\rightarrow	0.00	27.21	27.13	26.35	26.11
T	en-ui	\leftarrow	0.00	18.93	19.83	18.25	19.83
2	on io	\rightarrow	0.71	46.15	45.04	46.31	46.39
2	en-ja	\leftarrow	0.56	39.14	38.86	40.73	39.52
3	en-kn	\rightarrow	0.00	23.78*	22.03	22.90	24.23
5	CII-KII	\leftarrow	0.00	41.25*	43.04	42.50	41.79
4	en-ta	\rightarrow	0.08	20.12	19.35	18.97	19.43
4	CII-la	\leftarrow	0.08	24.60	24.60	23.71	25.00
5	en-zh	\rightarrow	0.07	37.34	38.14	0.07	35.74
5	CII-ZII	\leftarrow	0.00	32.48	34.83	0.00	32.48

Non-English centric evaluation

• PanLex dictionaries

	Unsup.	ID	Rom.	ID++	PanLex
th-ko	0.00	2.81	<u>3.37</u>	3.09	2.95
th-he	0.00	<u>9.75</u>	0.00	8.86	10.13
ko-th	0.00	<u>15.90</u>	14.23	15.26	14.36
ko-he	14.62	15.68	<u>16.08</u>	16.00	15.11
he-th	0.00	16.42	0.00	16.54	17.90
he-ko	14.30	<u>15.39</u>	15.15	15.09	16.06

Outline

- 1. Introduction
- 2. Background
- 3. Contribution
- 4. Approach
- 5. Evaluation
- 6. Conclusion

Outline

- 1. Introduction
- 2. Background
- 3. Contribution
- 4. Approach
- 5. Evaluation

Conclusion

• We exploited identical pairs that **surprisingly** appear in corpora of **distinct scripts**

- We exploited identical pairs that **surprisingly** appear in corpora of **distinct scripts**
- We combined them with a simple method to extract the initial hypothesis set via **romanization** and edit distance

- We exploited identical pairs that **surprisingly** appear in corpora of **distinct scripts**
- We combined them with a simple method to extract the initial hypothesis set via **romanization** and edit distance
- With both approaches, we obtained results that are competitive with high-quality dictionaries

- We exploited identical pairs that **surprisingly** appear in corpora of **distinct scripts**
- We combined them with a simple method to extract the initial hypothesis set via **romanization** and edit distance
- With both approaches, we obtained results that are competitive with high-quality dictionaries
- Without using explicit cross-lingual signal, we outperformed previous unsupervised work

- We exploited identical pairs that **surprisingly** appear in corpora of **distinct scripts**
- We combined them with a simple method to extract the initial hypothesis set via **romanization** and edit distance
- With both approaches, we obtained results that are competitive with high-quality dictionaries
- Without using explicit cross-lingual signal, we outperformed previous unsupervised work
- We question unsupervised approaches, and show that cheap cross-lingual signals should always be considered for building BWEs, even for distant languages.

References (selected)

https://dumps.wikimedia.org/ (01.04.2020)

https://github.com/isi-nlp/uroman

Artetxe, M., Labaka, G., and Agirre, E. (2017). Learning bilingual word embeddings with (almost) no bilingual data. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 451–462.

Lample, G., Conneau, A., Ranzato, M., Denoyer, L., and Jégou, H. (2018). Word translation without par- allel data. In International Conference on Learning Representations.

Artetxe, M., Labaka, G., and Agirre, E. (2018). A robust self-learning method for fully unsupervised cross-lingual mappings of word embeddings. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 789–798.

Grave, E., Joulin, A., and Berthet, Q. (2019). Unsupervised alignment of embeddings with wasserstein procrustes. In The 22nd International Conference on Artificial Intelligence and Statistics, pages 1880–1890. PMLR.

Mohiuddin, T. and Joty, S. (2019). Revisiting adversarial autoencoder for unsupervised word translation with cycle consistency and improved training. In Proceedings of NAACL-HLT, pages 3857–3867.

Baldwin, T., Pool, J., and Colowick, S. (2010). Panlex and lextract: Translating all words of all languages of the world. In Coling 2010: Demonstrations, pages 37–40.

Kamholz, D., Pool, J., and Colowick, S. (2014). Panlex: Building a resource for panlingual lexical translation. In Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC'14), pages 3145–3150.

Vulic', I., Glavaš, G., Reichart, R., and Korhonen, A. (2019). Do we really need fully unsupervised cross- lingual embeddings? In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP- IJCNLP), pages 4398–4409.

Thank you!

Silvia Severini Oettingenstraße 67 - 80538 Munich - Germany silvia@cis.uni-muenchen.de - https://silviaseverini.github.io/

Future work

- Extend this work to LMs:
 - our approach would be applicable to this paper that uses identical words to improve the cross-lingual alignment in multilingual LMs:

"UNKs Everywhere: Adapting Multilingual Language Models to New Scripts"