Combining Word Embeddings with Bilingual Orthography Embeddings for Bilingual Dictionary Induction

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

. Introduction

- Bilingual Dictionary Induction (BDI): find target language translations of source language words
- We improve BDI systems in two respects:
- -eliminating the need for language specific orthographic information, such as for Levenshtein distance
- -showing how to decide when to choose transliteration over semantic translation more precisely
- Novel classification approach for language pairs with different scripts by combining semantic (**BWEs**) and orthographic information (**BOEs**) • Novel transliteration system for candidates and BOEs extraction: seq2seqTr • System tested on the English-Russian(En-Ru) data provided in the BUCC
- 2020 shared task (Rapp et al., 2020).

2. Approach

seq2seqTr

- Character-level sequence-to-sequence model with a single-layer encoder and a single-layer decoder
- **Unsupervised**: not relying on transliterations labels
- Trained on the same training dictionary as for building BWEs, but we reduce the number of non-transliteration pairs with our iterative **cleaning process**

BOEs represent transliteration word pairs with similar vectors. final encoder representations of seq2seqTr (language agnostic auto-encoder ability).

Silvia Severini, Viktor Hangya, Alexander Fraser, Hinrich Schütze

Center for Information and Language Processing, University of Munich {silvia, hangyav, fraser}@cis.uni-muenchen.de

Classification model

Green background: seq2seqTr Blue background: pretrained BWEs White background: classifier architecture

- BWEs from MWEs, learned with fasttext skipgram (Bojanowski et al., 2017), and aligned with supervised Vecmap on a high-frequency seed dictionary (Artetxe et al. (2018)
- Combines BWEs, BOEs and additional features
- Negative sampling: two negative samples for each source word chosen from the candidates lists

3. Experiments and results

		All	High	Mid	Low
	BWEs with CSLS	0.29	0.47	0.29	0.11
ард	Transliteration	0.05	0.05	0.06	0.05
	(Severini et al., 2020)	0.33	0.50	0.33	0.16
	(Heyman et al., 2017)	0.21	0.28	0.22	0.14
	(Heyman et al., 2017) w/ features	0.30	0.47	0.29	0.15
	Proposed w/o features	0.22	0.33	0.23	0.12
	Proposed w/o BOEs	0.31	0.50	0.30	0.12
. They are the	Proposed	0.36	0.55	0.33	0.19
ic encoder with	Our approach outperforms all previou on the separate frequency sets (acc@		ches both	on the jo	int ("All") al

acc@1 on the development set as a function of the number of candidate words (e.g., 2 means 2 candidates from BWEs and 2 from seq2seqTr.

Transliteration mining with BOEs

- on the NEWS 2010 En-Ru test set (Kumaran et al., 2010)
- scripts

(Jiampojamarn et al., (El-Kahky et al., 2011) (Nabende et al., 2011 (Sajjad et al., 2017) BOEs BOEs best

Precision, Recall and F-measure for our BOEs and for state-of-the-art models on transliteration mining. sajjad2017statistical and our system are unsupervised while the others are (semi-) supervised.

- BOEs are extracted from our seq2seqTr transliteration model
- We improved over the baselines for English-Russian BDI

and

Reranking analysis

• The added features improve the performance of the models, and help determine the tradeoff between the information from the BWEs and BOEs

• Task where BOEs are the only source of information: transliteration mining

• Score of two words with the cosine similarity of the respective BOEs

• Good performance: BOEs are universal embedding property of representing English and Russian words in a shared space although they use different

	P	R	F
2010)	88.0	86.9	87.5
)	92.1	92.5	92.3
)	-	-	82.5
	67.1	97.1	79.4
	47.0	87.2	61.1
	88.8	68.2	77.1

4. Conclusion

```
• We combined semantic (BWEs) and orthographic (BOEs) information for the
Bilingual Dictionary Induction task for languages with different scripts
```