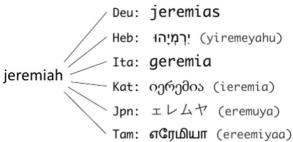
Towards a Broad Coverage Named Entity Resource: A Data-Efficient Approach for Many Diverse Languages

Silvia Severini, Ayyoob Imani, Philipp Dufter, Hinrich Schütze

LREC 2022: 13th Conference on Language Resources and Evaluation


Outline

- 1. Introduction
- 2. Method
- 3. Evaluation and Analysis
- 4. Use cases
- 5. Resource
- 6. Conclusion

Outline

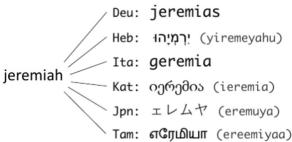
- 1. Introduction
- 2. Method
- 3. Evaluation and Analysis
- 4. Use cases
- 5. Resource
- 6. Conclusion

- Named entities (NEs):
 - Crucial for monolingual and cross-lingual NLP tasks
 - Multilingual NE lexicons are not available for many low-resource languages

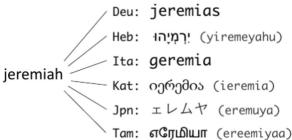
- Named entities (NEs):
 - Crucial for monolingual and cross-lingual NLP tasks
 - Multilingual NE lexicons are not available for many low-resource languages
- Goal: create a MNE resource for low-resource languages

jeremias

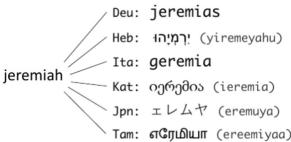
Heb: יְרְמְיָהוּ (yiremeyahu)


Ita: geremia

Kat: იერემია (ieremia)


Jpn: ברלץ (eremuya)

Тат: எரேமியா (ereemiyaa)


- Named entities (NEs):
 - Crucial for monolingual and cross-lingual NLP tasks
 - Multilingual NE lexicons are not available for many low-resource languages
- Goal: create a MNE resource for low-resource languages
- Approach:
 - We use the corpus that has the best coverage of low-resource languages: Parallel Bible Corpus (PBC)

- Named entities (NEs):
 - Crucial for monolingual and cross-lingual NLP tasks
 - Multilingual NE lexicons are not available for many low-resource languages
- Goal: create a MNE resource for low-resource languages
- Approach:
 - We use the corpus that has the best coverage of low-resource languages: Parallel Bible Corpus (PBC)
 - For most languages no other resource available (no named entity recognizer, no annotated data, no pretrained LMs)

- Named entities (NEs):
 - Crucial for monolingual and cross-lingual NLP tasks
 - Multilingual NE lexicons are not available for many low-resource languages
- Goal: create a MNE resource for low-resource languages
- Approach:
 - We use the corpus that has the best coverage of low-resource languages: Parallel Bible Corpus (PBC)
 - For most languages no other resource available (no named entity recognizer, no annotated data, no pretrained LMs)
 - Our method creates a very broad-coverage NE resource based on parallel text only

Contribution

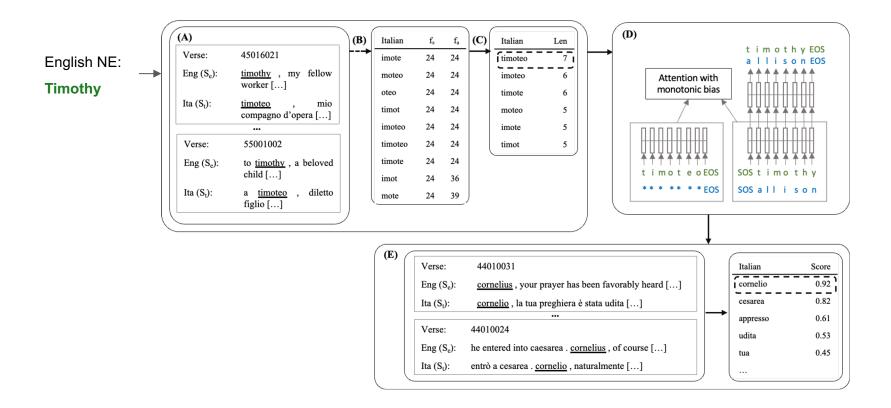
• We present **CLC-BN**, a method that first identifies named entity correspondences in a parallel corpus and then learns a neural transliteration model from them

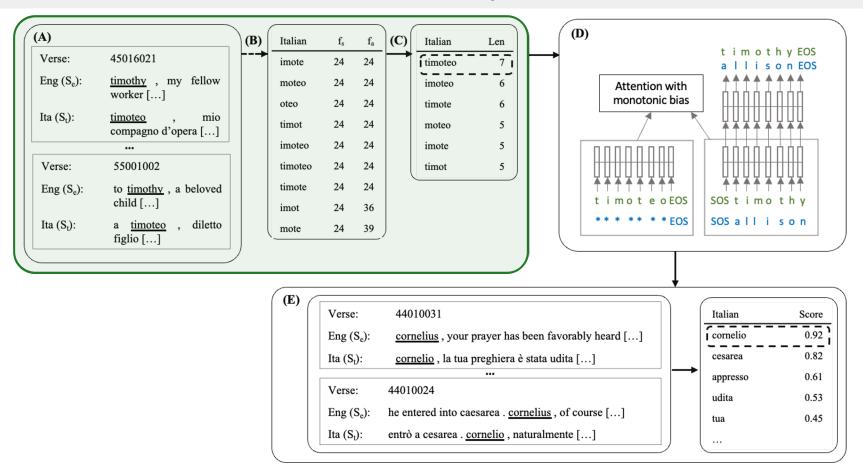
Contribution

- We present CLC-BN, a method that first identifies named entity correspondences in a parallel corpus and then learns a neural transliteration model from them
- We annotate a set of NEs to evaluate CLC-BN's performance on 13 languages through crowdsourcing and show a performance increase in comparison to prior work
 - We release the gold annotated sets as a resource for future work

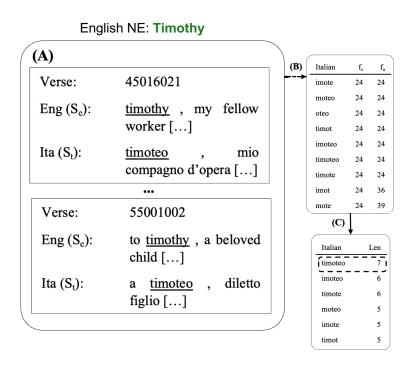
Contribution

- We present CLC-BN, a method that first identifies named entity correspondences in a parallel corpus and then learns a neural transliteration model from them
- We annotate a set of NEs to evaluate CLC-BN's performance on 13 languages through crowdsourcing and show a performance increase in comparison to prior work
 - We release the gold annotated sets as a resource for future work
- Using CLC-BN, we create and release a named entity resource for 1340 languages

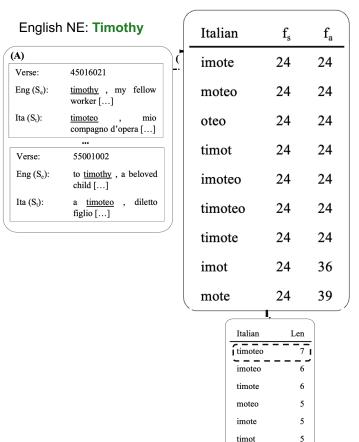

Outline


- 1. Introduction
- 2. Method
- 3. Evaluation and Analysis
- 4. Use cases
- 5. Resource
- 6. Conclusion

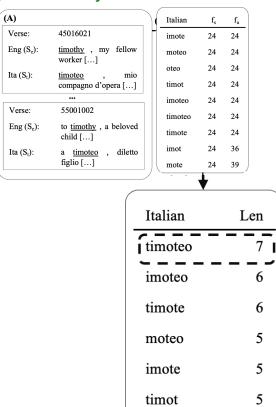
Outline

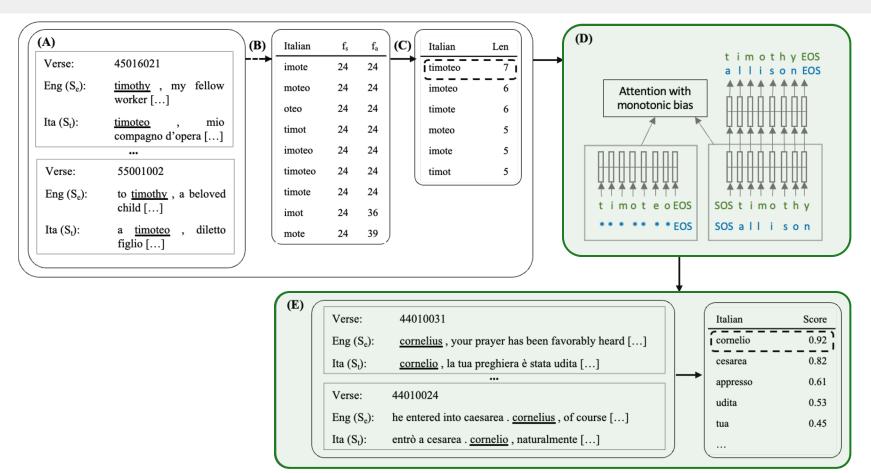

- 1. Introduction
- 2. Method
- 3. Evaluation and Analysis
- 4. Use cases
- 5. Resource
- 6. Conclusion

CLC-BN: CLC-Bootstraping + Neural transliteration



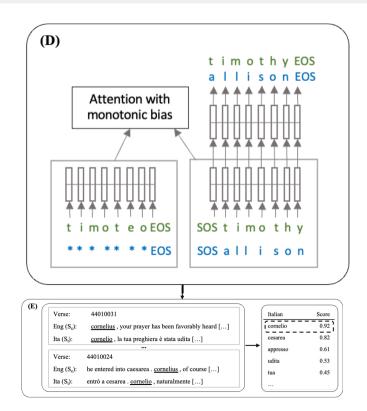
A. Extract the parallel subcorpus that contains **Timothy**




- A. Extract the parallel subcorpus that contains **Timothy**
- B. For all character n-grams in the target corpus, determine f_s and f_a. Discard n-grams with f_a>50

- A. Extract the parallel subcorpus that contains **Timothy**
- B. For all character n-grams in the target corpus, determine f_s and f_a . Discard n-grams with f_a >50
- C. Filter the remaining n-grams:
 - a. Keep n-grams with the highest ${\sf f_s}$
 - b. Keep n-grams with the minimum absolute difference between f_s and f_a
 - c. Return the n-gram with the smallest length difference

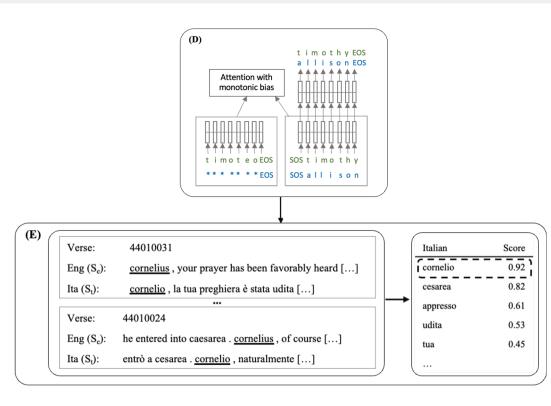
English NE: Timothy



 Goal: mine pairs with a neural Seq2seq model

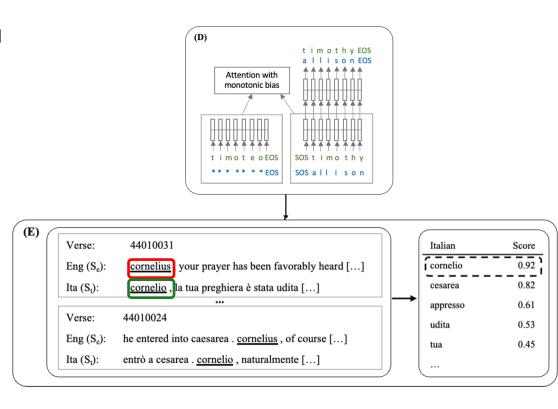
 Goal: mine pairs with a neural Seq2seq model

Model (D):


- Character-level Bi-GRU (Target-to-Source)
- English data augmentation with
 Wikipedia dump and Flair POS tagger
- Monotonic bias

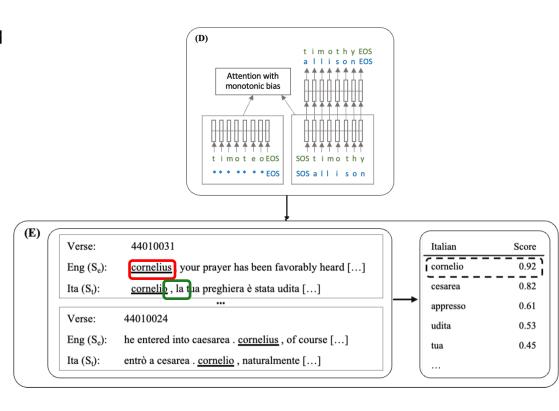
 Goal: mine pairs with a neural Seq2seq model

Model (D):


- Character-level Bi-GRU (Target-to-Source)
- English data augmentation with
 Wikipedia dump and Flair POS tagger
- Monotonic bias

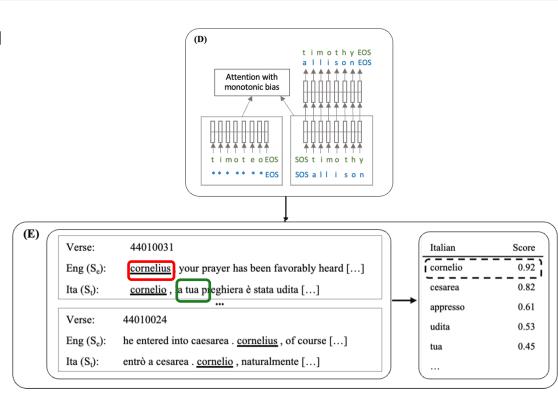
 Goal: mine pairs with a neural Seq2seq model

Model (D):


- Character-level Bi-GRU (Target-to-Source)
- English data augmentation with
 Wikipedia dump and Flair POS tagger
- Monotonic bias

Goal: mine pairs with a neural Seq2seq model

Model (D):


- Character-level Bi-GRU (Target-to-Source)
- English data augmentation with
 Wikipedia dump and Flair POS tagger
- Monotonic bias

Goal: mine pairs with a neural Seq2seq model

Model (D):

- Character-level Bi-GRU (Target-to-Source)
- English data augmentation with
 Wikipedia dump and Flair POS tagger
- Monotonic bias

Outline

- 1. Introduction
- 2. Method
- 3. Evaluation and Analysis
- 4. Use cases
- 5. Resource
- 6. Conclusion

Outline

- 1. Introduction
- 2. Method
- 3. Evaluation and Analysis
- 4. Use cases
- 5. Resource
- 6. Conclusion

Experimental setup

Parallel Bible Corpus (PBC)

 Evaluation over 13 languages with different scripts, resource availabilities, and language families

Silver evaluation using the Google translation API

Gold human evaluation through crowd-sourcing

	Lang	ISO	# verses	# parallel
	Arabic	Arb	31173	31062
4)	Finnish	Fin	31167	31061
urc	Greek	Ell	31183	31062
resc	Russian	Rus	31173	31062
low-resource languages	Spanish	Spa	31167	31062
	Swedish	Swe	31167	31062
	Zulu	Zul	31167	31062
	Hebrew	Heb	7952	7917
urce	Hindi	Hin	7952	7917
reso	Kannada	Kan	7952	7917
lowest-resource languages	Korean	Kor	7913	7869
low	Georgian	Kat	4904	4844
	Tamil	Tam	7942	7917

Gold human evaluation - baseline

Low-resource setting

	Arb	Ell	Fin	Spa	Swe	Rus	Zul	AVG
Wu et al. (2018)	70.0	80.0	90.0	91.7	88.3	72.9	84.8	82.5
CLC-B	56.7	45.0	50.0	48.3	48.3	57.6	74.6	54.4
CLC-BN	<u>81.7</u>	<u>91.7</u>	<u>93.3</u>	<u>96.7</u>	<u>91.7</u>	84.8	<u>93.2</u>	90.4

	Heb	Hin	Kan	Kat	Kor	Tam	AVG
Wu et al. (2018)	62.5	76.3*	61.7	70.0	54.2	66.1*	65.1
CLC-B	51.8	39.0*	48.3	45.0	37.3	47.5*	44.8
CLC-BN	71.4	<u>94.9</u> *	93.3	88.3	<u>78.0</u>	<u>91.5</u> *	<u>86.2</u>

Gold human evaluation - baseline

Low-resource setting

	Arb	Ell	Fin	Spa	Swe	Rus	Zul	AVG
Wu et al. (2018)	70.0	80.0	90.0	91.7	88.3	72.9	84.8	82.5
CLC-B	56.7	45.0	50.0	48.3	48.3	57.6	74.6	54.4
CLC-BN	<u>81.7</u>	<u>91.7</u>	<u>93.3</u>	<u>96.7</u>	<u>91.7</u>	84.8	<u>93.2</u>	90.4

	Heb	Hin	Kan	Kat	Kor	Tam	AVG	
Wu et al. (2018)	62.5	76.3*	61.7	70.0	54.2	66.1*	65.1	
CLC-B	51.8	39.0*	48.3	45.0	37.3	47.5*	44.8	
CLC-BN	71.4	<u>94.9</u> *	93.3	88.3	<u>78.0</u>	<u>91.5</u> *	<u>86.2</u>	J

Gold human evaluation - baseline

Low-resource setting

	Arb	Ell	Fin	Spa	Swe	Rus	Zul	AVG
Wu et al. (2018)	70.0	80.0	90.0	91.7	88.3	72.9	84.8	82.5
CLC-B	56.7	45.0	50.0	48.3	48.3	57.6	74.6	54.4
CLC-BN	81.7	<u>91.7</u>	93.3	96.7	<u>91.7</u>	84.8	<u>93.2</u>	90.4

	Heb	Hin	Kan	Kat	Kor	Tam	AVG
Wu et al. (2018)	62.5	76.3*	61.7	70.0	54.2	66.1*	65.1
CLC-B	51.8	39.0*	48.3	45.0	37.3	47.5*	44.8
CLC-BN	71.4	<u>94.9</u> *	93.3	88.3	<u>78.0</u>	<u>91.5</u> *	86.2

Gold human evaluation - word alignment

Low-resource setting

	Arb	Ell	Fin	Spa	Swe	Rus	Zul	AVG
Östling et al. (2016)	61.7	88.3	76.7	86.7	85.0	83.1	86.4	81.1
Sabet et al. (2020)	20.0							40.9
CLC-B	56.7	45.0	50.0	48.3	48.3	57.6	74.6	54.4
CLC-BN	<u>81.7</u>	<u>91.7</u>	93.3	<u>96.7</u>	<u>91.7</u>	84.8	<u>93.2</u>	90.4

	Heb	Hin	Kan	Kat	Kor	Tam	AVG	
Östling et al. (2016)	83.9	69.5*	38.3	68.3	33.9	35.6*	57.5	
Sabet et al. (2020)	23.2	47.5*	46.7	20.0	40.0	47.5*	37.5	J
CLC-B	51.8	39.0*	48.3	45.0	37.3	47.5*	44.8	
CLC-BN	71.4	<u>94.9</u> *	93.3	88.3	78.0	<u>91.5</u> *	<u>86.2</u>	

Gold human evaluation - word alignment

Low-resource setting

	Arb	Ell	Fin	Spa	Swe	Rus	Zul	AVG
Östling et al. (2016)	61.7	88.3	76.7	86.7	85.0	83.1	86.4	81.1
Sabet et al. (2020)	20.0	40.0	60.0	4 <u>5</u> .0	50.0	45.8	25.4	40.9
CLC-B	56.7	45.0	50.0	48.3	48.3	57.6	74.6	54.4
CLC-BN	<u>81.7</u>	<u>91.7</u>	<u>93.3</u>	<u>96.7</u>	<u>91.7</u>	<u>84.8</u>	<u>93.2</u>	90.4

	Heb	Hin	Kan	Kat	Kor	Tam	AVG	
Östling et al. (2016)	83.9	69.5*	38.3	68.3	33.9	35.6*	57.5	
Sabet et al. (2020)	23.2	47.5*	46.7	20.0	40.0	47.5*	37.5	
CLC-B	51.8	39.0*	48.3	45.0	37.3	47.5*	44.8	
CLC-BN	71.4	<u>94.9</u> *	93.3	88.3	78.0	<u>91.5</u> *	86.2	

Error Analysis

#	English	Arabic	Finnish	Greek	Hebrew	Kannada	Russian	Tamil
28	elijah	alalihaau	eliaa	elia	veaeliyahu	eliiyanaagali	elisei	eliyaavaa
12	titus	tiytusa	titus	titos	titos	titanannu	titu	tiittuvin
8	elizabeth	aaliysaabaata	elisabet	elisabet	elisheva	elisabeet	elizaveta	elicapet
3	miletus	miyliytusa	miletokseen	mileto	lemilitos	mileetakke	mileta	mileettu
2	rufus	ruwfusa	rufuksen	roufo	vishelom	uphaniguu	rufa	ruupuvukkum
2	hermes	wahirmisa	hermeeksi	epairne	heremes	meeyaniguu	germes	ermee

Error Analysis

#	English	Arabic	Finnish	Greek	Hebrew	Kannada	Russian	Tamil
28	elijah	alalihaau	eliaa	elia	veaeliyahu	eliiyanaagali	elisei	eliyaavaa
12	titus	tiytusa	titus	titos	titos	titanannu	titu	tiittuvin
8	elizabeth	aaliysaabaata	elisabet	elisabet	elisheva	elisabeet	elizaveta	elicapet
3	miletus	miyliytusa	miletokseen	mileto	lemilitos	mileetakke	mileta	mileettu
2	rufus	ruwfusa	rufuksen	roufo	vishelom	uphaniguu	rufa	ruupuvukkum
2	hermes	wahirmisa	hermeeksi [epairne	heremes	meeyaniguu	germes	ermee

Outline

- 1. Introduction
- 2. Method
- 3. Evaluation and Analysis
- 4. Use cases
- 5. Resource
- 6. Conclusion

- 1. Introduction
- 2. Method
- 3. Evaluation and Analysis
- 4. Use cases
- 5. Resource
- 6. Conclusion

Transliteration

Transliteration

 Extending existing multilingual resources (i.e., BabelNet)

Lang.	CLC-BN	Babel	New NEs %
Arb	977	683	30.1
Fin	979	647	33.9
Ell	979	658	32.8
Rus	485	449	7.4
Spa	979	784	19.9
Swe	979	684	30.1
Zul	979	471	51.9
Heb	467	413	11.6
Hin	467	334	28.5
Kan	467	299	36.0
Kor	467	386	17.3
Kat	368	271	26.4
Tam	433	318	26.6
Jpn	979	715	27.0
Zho	979	698	28.7
Tha	467	337	27.8
AVG.	715	509	27.2

Transliteration

 Extending existing multilingual resources (i.e., BabelNet)

Lang.	CLC-BN	Babel	New NEs %
Arb	977	683	30.1
Fin	979	647	33.9
Ell	979	658	32.8
Rus	485	449	7.4
Spa	979	784	19.9
Swe	979	684	30.1
Zul	979	471	51.9
Heb	467	413	11.6
Hin	467	334	28.5
Kan	467	299	36.0
Kor	467	386	17.3
Kat	368	271	26.4
Tam	433	318	26.6
Jpn	979	715	27.0
Zho	979	698	28.7
Tha	467	337	27.8
AVG.	715	509	27.2

Transliteration

- Extending existing multilingual resources (i.e., BabelNet)
- Cross-lingual mapping of word embeddings
 - VecMap
 - Bilingual Lexicon Induction (MUSE)

	Eng-Jpn	Eng-Tam	Eng-Zho
Unsupervised	0.0	0.0	0.0
Semisupervised	30.43	14.4	30.1

- 1. Introduction
- 2. Method
- 3. Evaluation and Analysis
- 4. Use cases
- 5. Resource
- 6. Conclusion

- 1. Introduction
- 2. Method
- 3. Evaluation and Analysis
- 4. Use cases
- 5. Resource
- 6. Conclusion

Resource

- 1340 languages, 1134 of which are lowest-resource, average of 503 NEs per language
- Best represented language families: Austronesian, Niger-Congo and Indo-European
- We cover all major areas of linguistic diversity (e.g., Amazonian, African, and Papua New Guinea)
- Our NEs resource is freely available at http://cistern.cis.lmu.de/ne_bible/

Example: English – Italian resource

English	Italian
alexander	alessandro
deborah	debora
egypt	egitto
jahaziel	iahaziel
lucius	lucio
philadelphia	filadelfia
rachel	rachele
tiberius	tiberio

Example: English – Italian resource

English	Italian
alexander	alessandro
deborah	debora
egypt	egitto
jahaziel	iahaziel
lucius	lucio
philadelphia	filadelfia
rachel	rachele
tiberius	tiberio

- 1. Introduction
- 2. Method
- 3. Evaluation and Analysis
- 4. Use cases
- 5. Resource
- 6. Conclusion

- 1. Introduction
- 2. Method
- 3. Evaluation and Analysis
- 4. Use cases
- 5. Resource
- 6. Conclusion

 We presented CLC-BN, a new method that identifies NE correspondences using cooccurrence statistics and a neural transliteration model

 We presented CLC-BN, a new method that identifies NE correspondences using cooccurrence statistics and a neural transliteration model

We showed that it outperforms prior work on human-annotated gold data

 We presented CLC-BN, a new method that identifies NE correspondences using cooccurrence statistics and a neural transliteration model

We showed that it outperforms prior work on human-annotated gold data

 We illustrated its utility for knowledge graph augmentation and Bilingual Lexicon Induction

 We presented CLC-BN, a new method that identifies NE correspondences using cooccurrence statistics and a neural transliteration model

We showed that it outperforms prior work on human-annotated gold data

 We illustrated its utility for knowledge graph augmentation and Bilingual Lexicon Induction

 We publish a new NE resource for 1340 languages by applying CLC-BN to the Parallel Bible Corpus

References (selected)

- Akbik, A., Bergmann, T., Blythe, D., Rasul, K., Schweter, S., and Vollgraf, R. (2019). Flair: An easy- to-use framework for state-of-the-art nlp. In NAACL
 2019, 2019 Annual Conference of the North American Chapter of the Association for Computational Linguistics (Demonstrations), pages 54–59.
- Mayer, Thomas and Cysouw, Michael. (2014). Creating a massively parallel bible corpus. Navigli, Roberto and Ponzetto, Simone Paolo. (2012).
- Wu, Winston and Vyas, Nidhi and Yarowsky, David. (2018). Creating a translation matrix of the Bible's names across 591 languages.
- Östling, R., Tiedemann, J., et al. (2016). Efficient word alignment with markov chain monte carlo. The Prague Bulletin of Mathematical Linguistics.
- Sabet, M. J., Dufter, P., Yvon, F., and Schütze, H. (2020). Simalign: High quality word alignments without parallel training data using static and contextualized embeddings. In Findings of the Association for Computational Linguistics: EMNLP 2020, pages 1627–1643.
- BabelNet: The automatic construction, evaluation and application of a wide-coverage multilingual semantic network. Elsevier.
- Alexis Conneau and Guillaume Lample and Marc'Aurelio Ranzato and Ludovic Denoyer and Herv'e J'egou. (2018). Word Translation Without Parallel Data.
- https://dumps.wikimedia.org/ (01.04.2020)
- https://cloud.google.com/translate
- https://github.com/artetxem/vecmap

Thank you!

Silvia Severini
Oettingenstraße 67 - 80538 Munich - Germany
silvia@cis.uni-muenchen.de - https://silviaseverini.github.io/

